CA!	0.2640 (2)	0 1 (27)	(A)	0.1021.(2)	0.0(00.0)
C4	0.2040 (3)	0.1037 ((8)	0.1031 (3)	0.0609 (9)
C13	0.1624 (3)	0.0354 ((7)	0.3563 (3)	0.0498 (7)
C14	0.2347 (3)	-0.0878 ((8)	0.4376 (3)	0.0627 (9)
C15	0.1617 (3)	0.6619 (7)	0.1388 (3)	0.0550(8)
C16	0.0844 (4)	0 7310 0	9)	0.0334 (4)	0.0874 (15)
C17	0 5048 (3)	0 4028 (8)	0.3816(3)	0.0574 (8)
C19	0.5046 (3)	0.4020	10)	0.2610 (3)	0.037 + (8)
	0.3990 (3)	0.4/9/ (10)	0.2590 (4)	0.0775 (13)
C19	0.3693 (3)	0.0051 (9)	0.0249 (3)	0.0655 (10)
C20	0.4488 (5)	-0.1443 (12)	0.0426 (5)	0.105 (2)
Tab	nle 2 Sela	ected acom	otric n	aramotors	(Å °)
140	<i>ne 2. ben</i>	cicu geom	en ic p	urumeters	(A,)
01—N		1.290 (3)	C1C	9	1.462 (4)
O2—C6		1.361 (4)	C1C	1'	1.514 (4)
02-C11		1 413 (5)	N3		1 474 (4)
03 C7		1 260 (2)		4	1.509 (5)
03-01		1.309 (3)	<u> </u>	4	1.508 (5)
03-012		1.403 (4)	C4-C	10	1.507 (4)
04—C13		1.353 (4)	C5C	10	1.386 (4)
04—C1′		1.447 (4)	C5—C	6	1.394 (4)
O5-C15		1.348 (5)	C6C	7	1.402 (4)
O5-C2'		1.434 (3)	C7-C	8	1.377 (4)
06-C17		1 358 (4)	<u> </u>	Ő.	1 414 (4)
06 C2/		1.550 (4)	C0-C	2	1.714 (4)
00-03		1.445 (4)	(9-(10	1.380 (4)
0/		1.329 (5)			1.545 (4)
07—C4′		1.441 (5)	C2'(23'	1.527 (4)
O8—C13		1.198 (4)	C3'-(C4'	1.505 (5)
09—C15		1.190 (5)	C13-4	C14	1.466 (5)
O10-C17		1.185 (4)	C15-4	C16	1,484 (5)
011		1 208 (6)	C17-4	C18	1 497 (5)
C1N		1 307 (4)	C10_	C20	1 480 (7)
		1.507 (4)	017	020	1.400 (7)
C6-02-C	:11	118.1 (3)	C5C	10—C9	120.4 (3)
C7—O3—C	12	117.5 (2)	C5—C	10—C4	121.5 (3)
C13-04-	C1′	116.7 (2)	C9—C	10—C4	118.1 (3)
C15-05-	C2′	117.8 (3)	04—C	1'—C1	109.8 (2)
C17-06-	C3′	115.7 (2)	04—C	1'—C2'	106.3 (2)
C19-07-	C4'	117.7 (4)	CI-C	1' - C2'	1144(3)
N-CI-C)	1197(3)	05-0	2' - C''	1070(2)
	,	119.7(3)	05-0	$2 - C_{3}$	107.0 (2)
	17	10.7 (3)	03-0	2 - 1	100.8 (2)
	1	123.0 (2)			112.4 (3)
		123.7 (3)	06-0	3'	107.2 (2)
OI-N-C	5	115.6 (2)	06-0	3'-C2'	109.7 (3)
CI-N-C3		120.7 (3)	C4' —(.'3' —C2'	113.5 (3)
N-C3-C4	ļ	110.9 (3)	07—C	4′—C3′	108.1 (3)
C10-C4-	C3	110.0 (2)	08—C	13—04	121.6 (3)
C10C5	C6	120.7 (3)	08—C	13—C14	127.0 (3)
02-C6-C	5	124.7 (3)	04—C	13—C14	111.4 (3)
02-C6-C	7	116.0 (3)	09-0	15-05	123 2 (3)
C5-C6-C	7	1193(3)	09-0	15-C16	1264(4)
03-07-0	'8	124 4 (3)	05_0	15 C16	110.4(4)
03 C7 C	.0 '6	124.4(3)	00-0		10.4 (4)
	.0 	120.0 (3)		C17 - C10	122.5 (5)
	0	120.0 (2)			126.1 (3)
U/L8L	9	120.6 (3)	06-0	1/	111.4 (3)
C10-C9-	C8	119.0 (2)	011-0	C19—07	123.6 (4)
C10-C9-	CI	119.3 (2)	011	C19—C20	125.7 (4)
C8C9C	1	121.7 (2)	07—C	19—C20	110.7 (5)
C9C1N	-01	178 4 (3)	C6—C	5	179.6 (3)
		-37(5)			176.8 (3)
		- 5.7 (5)		3 - C10 - C1	170.8 (3)
		0.9(3)		-10 - 10	1/9.3 (3)
	<u> </u>	1/8.9(3)		y-010-04	- 2.3 (5)
01-N-C3		145.0 (3)	<u> </u>	4-CI0-CS	147.9 (3)
CI-N-C3		-37.3 (5)	C3-C	4-C10-C9	-33.0 (4)
NC3C4	C10	51.2 (4)	N-C1	C1'04	-145.3 (3)
C7—C8—C	9—C1	-177.3 (3)	С9—С	1—C1′—O4	32.5 (4)
N-C1-C9	-C10	20.5 (5)	N—Ci	-C1'-C2'	95.3 (3)
C1'-C1-C	C9-C10	-157.3 (3)	С9—С	1-C1'-C2'	-86.8 (3)
N-C1-C9		- 161.1 (3)	C1-C	1'-C2'-05	-79.4 (3)
C1'-C1-C	С9—С8	21.1 (5)	CI-C	1'-C2'-C3'	163.6 (2)

Data collection, cell refinement and data reduction were performed using Kuma diffractometer software. The (0kl) reflections were used for the calculation of R_{int} . The structure was solved using *SHELXS*86 (Sheldrick, 1990) and refined using *SHELXL*93 (Sheldrick, 1994). The H atoms were positioned according to geometric criteria. The Flack parameter [-0.1 (3)] and former experimental evidence indicated that the choice of absolute configuration was correct. Molecular graphics were prepared using *ORTEPII* (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1162). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Czarnocki, Z. (1992a). J. Chem. Res. (S), pp. 334-335.
- Czarnocki, Z. (1992b). J. Chem. Res. (M), pp. 2801-2819.
- Czarnocki, Z. & Maurin, J. K. (1993). Acta Cryst. C49, 1992-1994.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.

Acta Cryst. (1994). C50, 1781-1784

Two Heterocyclic 1,2,4,5-Tetrazines

MOU-YUNG YEH AND CHUN-YIN HUANG

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan

CHUEN-HER UENG

Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan

YU WANG

Department of Chemistry, National Taiwan University, Taipei, Taiwan

(Received 31 March 1992; accepted 20 February 1994)

Abstract

The title compounds, 6-bromo-1,4-dihydro-1,4-di(o-tolyl)-1,2,4,5-tetrazin-3(2H)-one, C₁₆H₁₅BrN₄O, and 3,6-dibromo-1,4-dihydro-1,4-bis(p-methoxyphenyl)-1,2,4,5-tetrazine, C₁₆H₁₄Br₂N₄O₂, were prepared from 4-bromo-3-(o-tolyl)sydnone and 4-bromo-3-(p-methoxyphenyl)sydnone, respectively, in thf under ultrasonic irradiation, and identified with IR, ¹H NMR, mass spectrum and elemental analyses. The heterocyclic rings of both title compounds appear to lack aromatic character, as judged from the bond lengths.

Comment

Sydnone is a typical meso-ionic compound with unique properties (Stewart, 1964; Ohta & Kato, 1969; Ueng, Lee, Wang & Yeh, 1985). Although the sydnone ring has some aromatic character, sydnone compounds sometimes decompose during reaction. In the present work, we tried to synthesize bissydnone from 4-halosydnones by an Üllmann reaction under ultrasonic irradiation. The sydnone ring decomposed to give tetrazine derivatives when the reaction was carried out in thf solution, but decomposition did not occur in N,N-dimethylformamide medium. Compound (1), 6-bromo-1,4-dihydro-1,4-di(o-tolyl)-1,2,4,5-tetrazin-3(2H)-one, was prepared from 4-bromo-3-(o-tolvl)sydnone, and compound (2), 3,6-dibromo-1,4-di(p-methoxyphenyl)-1,4dihydro-1,2,4,5-tetrazine, from 4-bromo-3-(pmethoxyphenyl)sydnone. In order to confirm the structure and study the bond character of the title compounds, the X-ray single-crystal structure determinations were undertaken.

The molecular structures are shown in Fig. 1. The C(1)—O(1) length [1.224 (5) Å] in the heterocycle ring of compound (1) is within the typical C=O double-bond range $(1.23 \pm 1 \text{ Å})$. The N(2)—C(2) length [1.257 (5) Å], which is close to the N==C double-bond value (Ueng, Wang & Yeh, 1987), is shorter than the other three N-C bond lengths [N(4)—C(1) 1.360 (5), N(1)—C(1) 1.375 (5), N(3)—C(2) 1.378 (5) \text{ Å}]. The N(1)—N(2) and N(3)—N(4) bond lengths [1.426 (4) and 1.418 (5) \text{ Å}, respectively] have single-bond character (N—N single bond 1.44 $\pm 4 \text{ Å}$).

Planarity can be quantified by χ^2 which is defined as $\sum \Delta d_i^2 / (\sigma_x^2 + \sigma_y^2 + \sigma_z^2)$, where Δd_i is the distance of the atom from the least-squares plane and σ_x . σ_y and σ_z are the standard deviations of the coordinates x, y and z, respectively, for each atom. The planarity coefficient of the two phenyl groups of compound (1) are 3.9 [C(3)-C(8)] and 0.5 [C(10)-C(15)]. Hence the coefficient for the heterocyclic ring, $\chi^2 = 9095.5$ $[\Delta d: N(1) 0.239 (4); N(3) 0.214 (4); C(2) - 0.083 (5);$ C(1) -0.103(5);N(2) -0.168(4); N(4) -0.176(5) Å] indicates significant departures from planarity. The distances of Br, O(1), C(3) and C(10)

Fig. 1. Molecular structures of (a) compound (1) and (b) compound (2).

from the least-squares plane are -0.545 (6), -0.314 (6), 0.3077 (7) and 1.500 (6) Å, respectively, *i.e.* the two phenyl groups are on the same side of the least-squares plane, and Br and O(1) are on the other side. With the dihedral angle between N(1)—N(2)— C(2)—Br ($\chi^2 = 23.8$) and N(1)—C(1)[=O(1)]—N(4) ($\chi^2 = 0.4$) being 33.7 (3)°, this shows that the interaction between the carbonyl group and the C(2)=N(2) double bond is negligible. From the bond-length and planarity data, the bonds of the six-membered ring may be described as localized C(2)=N(2) and C(1)= O(1) double bonds.

The N(2)—C(1) length [1.247 (9) Å] of comppound (2) is also shorter than the N(1)—C(1) length [1.370 (9) Å]. The N(1)—N(2) length [1.443 (8) Å], which is slightly longer than the corresponding bond in compound (1), shows typical single-bond character. The ring is again not very planar, $\chi^2 = 3477.7$, with Br and C(2) 0.464 (7) and -0.04 (1) Å from the least-squares plane, respectively. Therefore, the heterocyclic ring in compound (2), as in compound (1), lacks aromatic character and the bonds may be described as localized C(1)=N(2) double and N(1)— N(2) single bonds.

There is little π interaction between the phenyl ring and the heterocyclic ring owing to the large dihedral angle between them in compounds (1) and (2) [88.6 (2) and 71.3 (2)° in (1); 62.0 (3)° in (2)]. The bond lengths and angles of the tolyl and methoxyphenyl groups are normal. Both the title compounds have no intermolecular contacts of structural significance.

Experimental

Compound (1) was prepared by adding 4-bromo-3-(otolyl)sydnone (0.64 g, 2.5 mmol) to tetrahydrofuran (10 cm³), oscillating the solution and irradiating with ultrasonic radiation (20 kHz, 225 W) for 4 h in a water bath at room temperature. After reducing to about 5 cm³, the solution was allowed to stand for 1 d, yielding colourless crystals, which were filtered and washed with 95% alcohol, and dried; m.p. 449-450 K, vield 0.20 g (44%). Analysis: found, C 53.30, H 4.28, N 15.58, Br 22.17%; calculated for C₁₆H₁₅BrN₄O, C 53.47, H 4.21, N 15.63, Br 22.24%. IR (KBr) vmax: 3190, m (N—H), 1683, s (C==O) and 1590 cm⁻¹, m (C==N). ¹H NMR δ_{H} (DMSO-d₆): 9.84 (1*H*, *s*, N—H); 7.45–7.25 (8*H*, *m*, 2C₆H₄); 2.42 (3H, s, Ar-CH₃) and 2.20 (3H, s, Ar-CH₃). Mass m/z (%): 360 (M^+ + 2, 69), 358 (M^+ , 71), 198 (13), 196 (13), 133 (26) and 91 (100). The compound was recrystallized from dichloromethane. The density D_m was measured by flotation in CHCl₃/CCl₄.

Compound (2) was prepared in a similar way to compound (1), except that the solvent was purified before use. 4-Bromo-3-(p-methoxyphenyl)sydnone (0.68 g, 2.5 mmol) yielded colourless crystals; m.p. 495-496 K, yield 0.14 g (25%). Analysis: found, C 42.25, H 3.16, N 12.25, Br 35.40%; calculated for C₁₆H₁₄Br₂N₄O₂, C 42.32, H 3.11, N 12.34, Br 35.19%. IR (KBr) ν_{max} : 1590, 1578 cm⁻¹, m (C=N). ¹H NMR δ_H (DMSO-d₆): 7.33 (4*H*, *d*, *J* = 90 Hz, Ar-2', 6', 2'', 6''-H); 7.00 (4H, d, J = 90 Hz, Ar-3',5',3'',5''-H) and 3.79 (6H, s, 2 OCH₃). Mass m/z (%): 456 (M^+ + 4, 39), 454 (M^+ + 2, 100), 452 (M⁺, 45), 214 (25), 212 (24), 147 (87), 133 (48) and 107 (54). The compound was recrystallized from methanol. The density D_m was measured by flotation in CHCl₃/CHBr₃.

reflections

frequency: 120 min

intensity variation: <3%

Compound (1)

Crystal data

C₁₆H₁₅BrN₄O Mo $K\alpha$ radiation $M_r = 359.2$ $\lambda = 0.7107 \text{ Å}$ Triclinic Cell parameters from 25 $P\overline{1}$ $\theta=8.515{-}12.29^\circ$ a = 8.217 (3) Å b = 8.477 (5) Å $\mu = 2.56 \text{ mm}^{-1}$ c = 12.045 (3) Å T = 298 K $\alpha = 99.16 (3)^{\circ}$ $0.70 \times 0.45 \times 0.30$ mm $\beta = 104.23 \ (2)^{\circ}$ Colourless $\gamma = 95.41 (5)^{\circ}$ $V = 795.0 \text{ Å}^3$ Z = 2 $D_x = 1.50 \text{ Mg m}^{-3}$ $D_m = 1.51$ (3) Mg m⁻³ Data collection $R_{\rm int} = 0.010$ Enraf-Nonius CAD-4 diffractometer $\theta_{\rm max} = 24.9^{\circ}$ $h = -9 \rightarrow 9$ θ -2 θ scans [width (0.70 + $k = 0 \rightarrow 10$ $0.35 \tan\theta)^{\circ}$ $l = -14 \rightarrow 14$ Absorption correction: ψ scans 3 standard reflections $T_{\min} = 0.900, T_{\max} =$ 0.998 3004 measured reflections 2791 independent reflections 1937 observed reflections $[I > 1.5\sigma(I)]$

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.330 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.044	$\Delta \rho_{\rm min} = -0.290 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.026	Extinction correction:
S = 1.77	secondary
1937 reflections	Extinction coefficient:
245 parameters	$1.8(1) \times 10^{-6}$
Weighting scheme from	Atomic scattering factors
counting statistics	from International Tables
$(\Delta/\sigma)_{\rm max} = 0.737$	for X-ray Crystallography
·	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (1)

$$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	Deq -	- (0/ / 5)24	$a_j o_{ij} a_i a_j a_i$.a _j .		
	x	у		z	Bea	
Br	0.18917 (7)	0.01393	B (6) 0.2	3722 (5)	4.70(3)	
O (1)	0.0972 (4)	0.6424	(3) 0.1	371 (2)	3.5 (2)	
N(1)	0.2051 (4)	0.4940	(4) 0.2	739 (3)	3.0 (2)	
N(2)	0.1828 (4)	0.3345	(4) 0.2	966 (3)	3.2 (2)	
N(3)	0.2353 (4)	0.2581	(4) 0.1	131 (3)	3.0 (2)	
N(4)	0.1579 (5)	0.3917	(4) 0.0	789 (3)	3.2 (2)	
C(1)	0.1492 (5)	0.5182	(5) 0.1	613 (3)	3.0 (2)	
C(2)	0.2081 (5)	0.2314	(4) 0.2	174 (4)	2.9 (2)	
C(3)	0.1970 (6)	0.6175	(5) 0.3	677 (4)	3.4 (2)	
C(4)	0.0450 (7)	0.6365	(6) 0.3	923 (4)	5.0 (3)	
C(5)	0.0403 (9)	0.7596	(8) 0.4	822 (6)	6.5 (4)	
C(6)	0.185 (1)	0.8575	(7) 0.5	455 (5)	6.2 (4)	
C(7)	0.3319 (9)	0.8372	(6) 0.5	217 (5)	5.5 (4)	
C(8)	0.3433 (7)	0.7158	(5) 0.4	330 (4)	4.1 (3)	
C(9)	0.5082 (9)	0.692 (0.4	036 (6)	7.8 (4)	
C(10)	0.4027 (5)	0.2534	(5) 0.0	973 (4)	3.1 (2)	
C(11)	0.5395 (7)	0.2664	(6) 0.1	923 (4)	4.2 (3)	
C(12)	0.6992 (7)	0.2540	(7) 0.1	766 (5)	5.4 (3)	
C(13)	0.7199 (7)	0.2280	(8) 0.0	663 (6)	6.5 (4)	
C(14)	0.5828 (8)	0.2156	(7) -0.0	287 (5)	6.0 (4)	
C(15)	0.4225 (6)	0.2271	(5) -0.0	145 (4)	4.1 (3)	
C(16)	0.2761 (8)	0.2116	(8) -0.1	204 (5)	6.6 (4)	
Table 2	2. Selected	geometric	c paramete	ers (Å, °) f	or (1)	
Br—C(2)		1.893 (4)	N(2)—C(2)	1	1.257 (5)	
O(1)—C(1)		1.224 (5)	N(3)—N(4)	1	1.418 (5)	
N(1)—N(2)		1.426 (4)	N(3)—C(2)	1	1.378 (5)	
N(1)—C(1)		1.375 (5)	N(3)—C(10)	. 1	1.438 (5)	
N(1)—C(3)		1.432 (5)	N(4)—C(1)	1	1.360 (5)	
N(2)—N(1)-	-C(1)	119.0 (3)	O(1) - C(1) - C(1)	–N(4)	22.8 (4)	
N(2) - N(1)	-C(3)	114.1 (3)	N(1) - C(1) - C(1)	-N(4)	13.9 (4)	
C(1) - N(1) -	-C(3)	118.7 (3)	Br—C(2)—N	N(2)	17.0 (3)	
N(1) - N(2)	-C(2)	112.0 (3)	Br-C(2)-N	N(3)	16.1 (3)	
N(4)-N(3)-	-C(2)	110.6 (3)	N(2) - C(2)	-N(3)	26.7 (3)	
N(4)-N(3)-	-C(10)	114.6 (3)	N(1) - C(3)	-C(4)	20.1 (4)	
C(2)-N(3)-	-C(10)	118.4 (3)	N(1)-C(3)-	-C(8) 1	19.3 (4)	
N(3)-N(4)-	-C(1)	119.9 (3)	N(3)-C(10)	-C(11) 1	20.1 (4)	
O(1) - C(1)	-N(1)	123.3 (4)	N(3)-C(10)	-C(15) 1	(19.1 (4)	
~			- (-)	-(/		
Compoun	ıd (2)					
Crystal da	ıta					
$C_{16}H_{14}Br_{2}$	N_4O_2		Mo $K\alpha$ ra	diation		
$M_{-} = 454$	- · -		$\lambda = 0.710$	ΛÅ		
$\Omega_{ath ark} = + J_{ath}$	ah:a		Call = 0.710	/ /] 	25	
Orthorhombic			Cell parameters from 25			

М 0 Pbcn a = 18.975 (3) Å b = 10.327 (2) Åc = 8.569 (3) Å $V = 1679.2 \text{ Å}^3$ Z = 4 $D_x = 1.80 \text{ Mg m}^{-3}$ $D_m = 1.79$ (3) Mg m⁻³

reflections $\theta = 10.57 - 12.83^{\circ}$ $\mu = 4.80 \text{ mm}^{-1}$ T = 298 K $0.55 \times 0.30 \times 0.30$ mm Colourless

C₁₆H₁₅BrN₄O AND C₁₆H₁₄Br₂N₄O₂

Data collection

875 reflections

137 parameters

Enraf-Nonius CAD-4 diffractometer $\theta - 2\theta$ scans [width (0.60 + 0.35tan θ)°] Absorption correction: ψ scans $T_{min} = 0.908$, $T_{max} =$ 0.998 1587 measured reflections 1474 independent reflections 875 observed reflections $[I > 2.0\sigma(I)]$	$R_{int} = 0.008$ $\theta_{max} = 24.9^{\circ}$ $h = 0 \rightarrow 22$ $k = 0 \rightarrow 12$ $l = 0 \rightarrow 10$ 3 standard reflections frequency: 120 min intensity variation: < 2%
Refinement	
Refinement on F R = 0.037 wR = 0.028 S = 2.28	$(\Delta/\sigma)_{max} = 0.135$ $\Delta\rho_{max} = 0.350 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.520 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

ne Atomic scattering factors from International Tables Weighting scheme from for X-ray Crystallography counting statistics (1974, Vol. IV)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j$$

	x	у	z	Bea
Br	0.43730 (4)	0.20775 (8)	0.07844 (8)	3.43 (4
N(1)	0.4331 (3)	0.1087 (5)	-0.2289 (6)	2.6 (3)
N(2)	0.5418 (3)	0.1553 (6)	-0.1225(6)	2.8 (3)
C(1)	0.4763 (4)	0.1506 (7)	-0.1111 (7)	2.5 (4)
C(2)	0.3576 (4)	0.1137 (7)	-0.2185 (8)	2.2 (3)
C(3)	0.3184 (4)	0.2056 (8)	-0.2935 (8)	2.7 (4)
C(4)	0.2466 (4)	0.2061 (9)	-0.2715 (9)	3.2 (4)
C(5)	0.2125 (4)	0.1172 (8)	-0.1817 (8)	2.4 (4)
C(6)	0.2522 (5)	0.0235 (9)	-0.1085 (9)	3.1 (4)
C(7)	0.3250 (4)	0.0222 (9)	-0.1280 (9)	3.2 (4)
C(8)	0.1031 (6)	0.031(1)	-0.092 (2)	4.7 (6)
0	0.1409 (3)	0.1279 (5)	-0.1723 (6)	3.8 (3)

Table 4. Selected geometric parameters $(Å, \circ)$ for (2)

.1087, -0.27 -0.	711) and N(2a) at (0.45) 3775).	82, 0.1553,
1.880 (7)	N(2)C(1)	1.247 (9)
1.443 (8)	C(5)O	1.366 (9)
1.370 (9)	C(8)-O	1.41 (1)
1.436 (9)	.,	
110.3 (5)	N(1)C(1)N(2)	123.4 (6)
111.9 (5)	N(1) - C(2) - C(3)	122.6 (6)
122.7 (5)	N(1)C(2)C(7)	117.4 (7)
112.7 (5)	C(4)-C(5)-O	116.9 (7)
120.0 (5)	C(6)C(5)O	125.0 (7)
116.6 (5)	C(5)C(8)	118.4 (7)
	$\begin{array}{r} .1087, -0.27\\ -0.\\ 1.880 (7)\\ 1.443 (8)\\ 1.370 (9)\\ 1.436 (9)\\ 110.3 (5)\\ 111.9 (5)\\ 122.7 (5)\\ 112.7 (5)\\ 112.7 (5)\\ 1120.0 (5)\\ 116.6 (5)\\ \end{array}$	$\begin{array}{c} .1087, -0.2711) \text{ and } N(2a) \text{ at } (0.458 \\ -0.3775). \\ \hline \\ 1.880 (7) & N(2)-C(1) \\ 1.443 (8) & C(5)-O \\ 1.370 (9) & C(8)-O \\ 1.370 (9) & C(8)-O \\ 1.436 (9) \\ \hline \\ 110.3 (5) & N(1)-C(1)-N(2) \\ 111.9 (5) & N(1)-C(2)-C(3) \\ 112.7 (5) & N(1)-C(2)-C(7) \\ 112.7 (5) & C(4)-C(5)-O \\ 120.0 (5) & C(6)-C(5)-O \\ 116.6 (5) & C(5)-O-C(8) \\ \end{array}$

The structure was solved by the heavy-atom method. The H atoms of the phenyl groups were calculated after isotropic refinement; the others were found in difference Fourier maps and refined. The molecules of compound (2) possess a crystallographic twofold axis. NRCC SDP VAX (Gabe & Lee, 1981), ORTEP (Johnson, 1965) and the Enraf-Nonius (1979) Structure Determination Package were used in this work.

The authors thank the National Science Council for financial support.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: AL1011). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.

Gabe, E. J. & Lee, F. L. (1981). Acta Cryst. A37, S-339.

- Johnson, C. K. (1965). ORTEP Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Ohta, M. & Kato, H. (1969). Non-Benzenoid Aromatics, Vol. 1. ch. 4. New York: Academic Press.

Stewart, F. H. C. (1964). Chem. Rev. 64, 129-147.

Ueng, C.-H., Lee, P. L., Wang, Y. & Yeh, M.-Y. (1985). Acta Cryst. C41, 1776-1779.

Ueng, C.-H., Wang, Y. & Yeh, M.-Y. (1987). J. Chin. Chem. Soc. Taipei, 34, 105-110.

Acta Cryst. (1994). C50, 1784-1786

Diethyl 2-(2,3-Diphenylquinoxalin-6-ylaminomethylene)malonate

JÁN LOKAJ

Department of Microanalytical Chemistry, Faculty of Chemical Technology. Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia

VIKTOR KETTMANN

Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia

VIKTOR VRÁBEL, DUŠAN ILAVSKÝ AND VIKTOR MILATA

Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia

(Received 27 September 1993; accepted 14 February 1994)

Abstract

The substituted aminoethylenic group in the title compound, $C_{28}H_{25}N_3O_4$, is approximately coplanar with the heterocyclic plane [dihedral angle 16 (2)°] and the α -C atom C(23), is disordered between two well defined sites. This disorder originates from a flipping of the aminoethylenic moiety around the